Biomechanics of Physical Activity

Kathy Simpson
What Is Biomechanics of Physical Activity?

• The study of the structure and function of human beings using the principles and methods of mechanics of physics and engineering.

• Biomechanists *in the field of physical activity* study how these principles affect human movement and the structure and function of the human body.
Usefulness

• Improve movement techniques
 – Sport performance
 – Locomotion
 – Motor skill acquisition
• Improve equipment
• Prevent injury
• Guide rehabilitation and treatment
What Does a Biomechanist Do?

- Researcher
- Clinical biomechanist
- Performance enhancement specialist
- Ergonomist (industrial task analysis specialist)
- Human factors engineer
- University professor

(continued)
What Does a Biomechanist Do? (continued)

- Improve performance in sport and dance
- Reduce or prevent injuries at work, at home, and during exercise and sport tasks
- Improve the movements of people with pathological conditions (clinical settings)
- Increase performers’ health with exercise or training regimens
- Assist with the design of equipment, artificial limbs, and orthoses for safety
Goals of Biomechanics

• To understand how people use and are affected by the fundamental principles of mechanical physics and engineering that explain how forces influence our structure and function.

• To apply this understanding to (a) improve performance effectiveness (improve function) or (b) increase the safety and health of those body tissues that are affected by forces or those tissues involved in physical activity (improve structure).
History of Biomechanics

Early beginnings:

• Aristotle, Leonardo DaVinci
• Biomechanics applications begin in late 1800s
• Posse and Skarstrom: First use of the term *kinesiology* in the United States
• 1920s and 1930s: Researchers such as Ruth Glassow, Thomas Cureton, and Charles McCloy
• World events shape biomechanics (WW I, WW II, polio, prosthetics, physical therapy)
• 1950s: Anthropometry, human factors design

(continued)
History of Biomechanics (continued)

Era of contemporary biomechanics

• 1960s: Conferences, organizations, graduate-level programs, Kinesiology Section (1965)
• 1970s: Rapid expansion, sports medicine, dance kinesiology (biomechanics)
• Late 20th century: Continued expansion of university programs and organizations, switch from the term *kinesiology* to *biomechanics* to identify this subdiscipline
Research Methods in Biomechanics

Model of Analysis: Systematic Process

1. Identify the question.
2. State performance goals.
3. Consider influencing factors.
4. Understand motions and mechanics.
5. Determine relevant biomechanical principles and movement techniques.
6. Observe or measure.
7. What does it all mean? Assessment, evaluation, and interpretation: quantitative and qualitative.
Figure 10.2

Preobservation/Measurement

1. What is my question of interest?

2. State performance goals

3. Consider influencing factors and their interactions

4. Understand the motions and mechanics of the movement

5. Determine relevant biomechanical principles and related movement techniques or equipment

Observation/Measurement

6. Observe/Measure

 - Qualitative
 - Quantitative

Postobservation/Measurement

7. Assess, evaluate, or interpret meaning of observations/measurements

© 2009 Human Kinetics
Biomechanical Instrumentation and Other Tools

- Stopwatches, metronomes, protractors, barbells, and free weights
- Computer simulations
- Motion measurement devices: video, light-emitting diodes (LED)
- Force measurement devices:
 - Transducers, platforms
 - Electromyography (EMG)
Figure 10.3
Overview of Knowledge in Biomechanics of Physical Activity

• How do external forces (gravity, ground reaction forces, friction, fluid resistance) act on performers?
• How do internal forces act on performers?
• How do biomechanical laws of nature shape our movements?
 – Law of inertia
 – Law of action–reaction
 – Torque or moment
 – Propulsive forces and fluid forces

(continued)
Overview of Knowledge in Biomechanics of Physical Activity (continued)

Assessment and evaluation of performers: biomechanical profiles

• Profiles and performance assessment in physical activities
• Profiles and clinical assessment
Figure 10.5

<table>
<thead>
<tr>
<th>Compression loading (forces push tissue together)</th>
<th>Shear loading (forces cause tissue to slide against another tissue)</th>
<th>Tensile loading (forces pull tissue apart)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue loaded: bone in tibia</td>
<td>Tissue loaded: cartilage on end of tibia</td>
<td>Tissue loaded: knee ligament</td>
</tr>
</tbody>
</table>

- **Body weight**
 - Femur
 - Ligament
 - Tibia

- **Forces from ground**

- **Femur pulled back**
 - Cartilage
 - Ligament
 - Muscle pulls tibia forward

- **Thigh muscles**
 - Reaction: Femur pulls on ligament with equal and opposite force

- **Thigh muscle causes tibia to pull on ligament**

© 2009 Human Kinetics
Figure 10.7

a) Biceps muscle contracts

b) Moment produced by biceps

c) Arm rotates

© 2009 Human Kinetics
Mechanical Principles

An important skill for a physical activity specialist, biomechanist, or allied health rehabilitative specialist is to be able to choose the relevant mechanical principles that apply to the movement of interest, a question of interest or to a phenomenon occurring inside the body.
Are Impact Forces Bad for You?

- Ground reaction forces (GRFs) contribute to injuries.
- Bone adaptations to GRFs
 - Occurs during dynamic (not static) loading
 - Only short duration needed
 - Routine loading unlikely to stimulate bone adaptations
- Footwear
- Training errors: type, duration, intensity
Wrap-Up

Biomechanics of Physical Activity

• Important to all kinesiology professionals (physical educators for teaching motor skills, coaches for improving sport performance, physical therapists for guiding rehabilitation, fitness instructors for providing proper instruction and making equipment choices)
Wrap-Up (continued)

- Humans are not just objects that act passively when a force acts on them. Consequently, human movements are altered both consciously and subconsciously as a result of:
 - Sensory input, along with perceptions (for example, runners unconsciously hit the ground with less force when they perceive that the ground has become harder)
 - personal movement experiences; and
 - interactions among factors such as cultural expectations, socioeconomic class, gender, and anatomy.

- Biomechanics can help one predict what changes will or should be made to improve performance