THE NERVOUS SYSTEM

• The Nervous System:

TWO DIVISIONS OF THE NERVOUS SYSTEM

• Central Nervous System (CNS)
 – Composed of:
 – Controls:
 – Integrates:
 – Dependent upon:

• Peripheral Nervous System (PNS)
 – Link between:
 – Consists of:
 – Composed of sensory and motor divisions
 • Sensory:

 • Motor:

DIVISIONS OF THE PNS

• Somatic (Voluntary) Nervous System
 – Conducts impulses from:

• Autonomic (Involuntary) Nervous System
 – Innervates:
 – Maintains:

DIVISIONS OF THE AUTONOMIC N.S.

• Sympathetic N.S.

Lecture Notes

Anatomy 2B

Inhibits:

Dilates:

Accelerates:

• Parasympathetic N.S.

Constricts:

Promotes:

Returns:

NERVOUS SYSTEM CELL TYPES

• Neurons (nerve cells)

• Neuroglia

• NEUROGLIA (Glial Cells)

6 types

• _____ in PNS

• _____ in CNS

SUPPORTING CELLS OF THE CNS

• 1. Astrocytes

In CNS only

Anchor:

Pick up:

Recapture:
Lecture Notes

- **Guide:**

 - 3. Ependymal Cells
 - In CNS only
 - Line:
 - Circulate:

 - 4. Microglia
 - In CNS only
 - Monitor:
 - Devour:

SUPPORTING CELLS OF THE PNS

- 1. Schwann Cells
 - In PNS only
 - Wrap around:
 - Form:
 - Needed for:

- 2. Satellite Cells
 - In PNS only
 - Surround:
 - Help control:

NEURON STRUCTURE

- Cell Body (soma or perikaryon)
 - Contains:
 - Abundant clusters of rER called:

- Nerve Processes (neurites)
 - Dendrites
 -
Axon (nerve fiber)

- Axon (Nerve Fiber)
 - Axon hillock
 - Axoplasm
 - Axolemma

- Axon terminal = synaptic knobs or terminal boutons
 - Telodendria (terminal branches)
 - Axon collaterals

CLASSIFICATION OF NEURONS

- Neurons can be classified by structure:
 - Multipolar
 - Most common in:
 - Bipolar
 - Unipolar
• Neurons can be classified by function:
 – Afferent (sensory)
 • Carry info.
 – Efferent (motor)
 • Carry info.
 – Association or Interneurons
 • Link

OTHER NERVOUS SYSTEM STRUCTURES
• Ganglion
 – Clusters of
• Nuclei
 – Clusters of
• Tract
 – Bundles of
• Nerve
 – Bundles of

TYPES OF SYNAPSES
• Electrical Synapses
 –
 –
 –
 –
 –
• Chemical Synapses
 –
 –
 –
NEUROTRANSMITTERS

- Released at:
- Chemicals produced:
- Stored in:
- Nerve impulse causes:
- When bound to receptors on postsynaptic neuron, the neurotransmitter:

THE RESTING MEMBRANE POTENTIAL

- Inside of cell membrane is more negative than outside
- Difference between charge inside and outside cell = RMPs :

EXCITATORY NEUROTRANSMITTERS

- When bound to receptors on the postsynaptic neuron membrane:
 - Causes the opening of:
 - RMP becomes:
 - Depolarization of postsynaptic membrane:

DEPOLARIZATION

- A positive change in the RMP
 - Caused by:
 - Causes the inside of the cell membrane to become:
 - Depolarization:

INHIBATORY NEUROTRANSMITTERS

- When bound to receptors on the postsynaptic membrane:
 - Makes the membrane:
 - As the negative ions rush into the neuron, the RMP becomes:
 - Hyperpolarization:
HYPERPOLARIZATION

GRADED POTENTIALS

Can be:

• Alone:

• Together:

POSTSYNAPTIC POTENTIALS

EPSP (Excitatory Postsynaptic Potential)

 Binding of a neurotransmitter on the postsynaptic membrane:

 The neuron:

IPSP (Inhibitory Postsynaptic Potential)

 Binding of a neurotransmitter on the postsynaptic membrane:

 Inhibits:

TYPES OF NEUROTRANSMITTERS

40 to 50 known neurotransmitters

 Acetylcholine (Ach):

 Norepinephrine (NE)

 • Released by:

 • GABA-

 • Dopamine-

 • Serotonin-

 • Glutamate-
ACTION POTENTIALS (AP)

• Action Potential = Nerve Impulse

• Consists of:
 –
 –
 –

• If depolarization reaches threshold (usually a positive change of 15 to 20 mV or more),:
 – The positive RMP change causes:
 – Sudden large influx of sodium ions causes:
 – Begins at:

TYPES OF ION CHANNELS

• Chemically Gated (on dendrite or soma) –

• Voltage Gated (on axon hillock and axon) -

PROPAGATION

• Movement of:

• Caused by:

REPOLARIZATION

• Restoration of:

• A repolarization wave:

• 3 Factors contribute to restoring the negative membrane potential
 – Sodium (Na+) inactivation gates:
 – Potassium (K+) gates open:
 – Sodium/potassium pump kicks in (3Na+ out, 2K+ in)
THE SODIUM/POTASSIUM PUMP

- An active process:
 - Actively pumps:
 - Potassium leaks back out

ABSOLUTE REFRACTORY PERIOD

- Time from:
 - The neuron:
 - Relative refractory period follows: requires increased stimulation in order to fire
 - Most Na⁺ channels:
 - Some K⁺ channels:
 - Repolarization:

SUMMATION BY POSTSYNAPTIC NEURON

- A single EPSP:
 - EPSP’s:
 - Spatial Summation
 - Temporal Summation

ALL-OR-NONE RESPONSE

- An action potential:
 - When threshold is reached:
 - If threshold is not reached:

SALTATORY CONDUCTION

- Occurs:
 - Depolarization wave:
 - Results in:
SUMMARY OF EVENTS

• A nerve impulse in the presynaptic neuron causes:

• Neurotransmitter binding to receptors on postsynaptic neuron dendrite or soma cause:

• If Na+ channels open:
 – (depolarization)
 – (EPSP)
 – If RMP changes in a positive direction by 20mV (or reaches the threshold),:
 – Sodium:
 – As the positive ions get pushed down the axon, :
 – The process of restoring the negative RMP:

NERVE FIBER TYPES

• The larger the axon diameter:

• Myelinated axons :

• Type A fibers

 – Impulses travel at:

• Type B fibers

 – Impulses travel at:

• Type C fibers

 – Slow impulse conduction at:

NEURONAL CIRCUITS

• Diverging Circuits

 –

• Converging Circuits

 –
REFLEX ARCS

- Neural pathways with 5 components
 - Receptor
 - Sensory neuron
 - CNS integration center
 - Motor neuron
 - Effector
- A rapid, automatic response to a stimulus

CENTRAL NERVOUS SYSTEM

- CNS consists of brain and spinal cord

DIVISIONS OF THE BRAIN

- Brainstem
 - Medulla oblongata (1)
 - Pons (2)
 - Midbrain (3)
- Diencephalon (4)
 - Thalamus
 - Hypothalamus
 - Epithalamus
- Cerebellum (5)
- Cerebrum (6)

PROTECTION OF THE CNS

- Structures that help to protect the brain and spinal cord:
 - Cerebrospinal fluid (CSF)
• Three connective tissue membranes surrounding the brain and spinal cord

CEREBROSPINAL FLUID (CSF)

• Total volume of 150ml:
 • 500 ml:
 • Formed by:

THREE LAYERS OF MENINGES

• Dura mater
 – The outer periosteal layer:
 – In some areas the layers:
 – Extends inward in some areas forming:

DURAL SEPTA

• Dural septa
 – Falx cerebri
 – Falx cerebelli
 – Tentorium cerebelli

DURAL SPACES

• Subdural space
 – Space below:

• Epidural space
 – Space between:
THREE LAYERS OF MENINGES

• Arachnoid (Mater) Layer
 –
 –
 – Subarachnoid space
 • Space below:
 • Filled:
 •
• Arachnoid villi (granulations)
 –
• Pia Mater
 –
 –
 –
 – Small extension of pia called:

BLOOD-BRAIN BARRIER

• Barrier formed by:

• Prevents:

DISORDERS OF THE MENINGES

• Hydrocephalus
 – Build up of:
 –
 –
• Meningitis
 – Inflammation of:
 –
 –
BRAIN VENTRICLES

- Filled with:
 - Four ventricles
 - 1st and 2nd (Lateral) ventricles
 - Separated anteriorly by:
 - 3rd ventricle
 - Connected to:
 - 4th ventricle
 - Opens into central canal of spinal cord and subarachnoid space via:

SPINAL CORD

- Function
 - Controls:
 - Transmits:

- Structure

SPINAL CORD STRUCTURE

- Filum terminale
- Conus medullaris

- Cauda Equina

- Denticulate ligaments

- Gray Matter

 - Forms:
 - Ventral horns

 - Contain:

 - Exit through:

- SPINAL CORD: GRAY MATTER

- Dorsal horns

- Lateral horns

 - Contain:

 - Also exit through:

- SPINAL CORD STRUCTURE

- Gray commissure

 - Connects:

- External fissures
• White matter

• SPINAL CORD TRACTS
• Ascending Tracts
 – Spinothalamic

 • Info. regarding:

 • In:

 – Spinocerebellar

 • Carries info. regarding:

 • In:

• Ascending Tracts

 – Fasciculus cuneatus & Fasciculus gracilis

 • Carries info.:

• Descending Tracts

 – Corticospinal

 • Carries info. from:

 • All other descending tracts:

SPINAL CORD INJURIES/DISORDERS
• Trauma to spinal cord can cause:

 – Polio-

 – Amyotropic Lateral Sclerosis (ALS or Lou Gehrig’s disease)-

 – Spina bifida-
BLOOD SUPPLY TO THE BRAIN

• Circle of Willis

THE CEREBRUM: REGIONS

• In anterior and middle cranial fossa

• Six pair of lobes
 – Frontal (1)
 – Parietal (2)
 – Occipital (3)
 – Temporal (4)
 – Insula (5)

• Many functions in various regions

THE CEREBRUM: GRAY MATTER

• Cerebral Cortex
 – Gray matter (no tracts)
 – Gray matter also in basal nuclei (ganglia)

THE CEREBRUM: BASAL NUCLEI

• Influence:
• Project to:
• Receive:
• Monitor:
• Regulate:
• Important in:
THE CEREBRUM: GYRI AND SULCI

- Gyri (gyrus)
 -
- Sulci (sulcus)
 -
- Fissures
 -

THE CEREBRUM: GYRI

- Gyri
 - Precentral gyrus (1)
 - Postcentral gyrus (2)
 - Superior temporal gyrus (3)
 - Cingulate gyrus (4)

THE CEREBRUM: SULCI

- Sulci
 - Central sulcus (1)
 - Lateral (Sylvia) sulcus or fissure (2)
 - Parieto-occipital sulcus (3)
 - Calcarine sulcus (4)
 - Structures 3 and 4 are seen only at a medial view

THE CEREBRUM: FISSURES

- Fissures
 - Longitudinal fissure (1)
 -
 - Transverse fissure (2)
 -

THE CEREBRUM: WHITE MATTER

- White matter =
• Three types of fibers in cerebral white matter
 – Association fibers
 – Commisural fibers
 – Projection fibers

THE CEREBRUM: WHITE MATTER
• Commissures
 – Regions with commissural fibers

THE CEREBRUM: FUNCTIONS
• Three Functional Types of Areas Within the Cerebrum
 – Sensory Areas
 – Motor Areas
 – Association Areas
• Frontal Lobe
 – Primary Motor Cortex (1)
 – Premotor Area (2)
 • Controls:
− Frontal Eye Field (3)

− Broca’s Area (4)
 • Directs:

− Parietal Lobe
 − Primary Somatosensory Cortex (6)
 • Receives:

 − Sensory Association Area (7)
 • Integrates:
 • Evaluates:

− Occipital Lobe
 − Primary Visual Cortex (8)
 • Surrounds:
 • Interprets:
 • Allows for:

− Temporal Lobe
 − Primary Auditory Cortex (10)
 • Receives:
• Interprets:
 – Auditory Association Area (11)
 –

Posterior Temporal Lobe
 – Wernicke’s Area (12)
 –
 –
 –

• Insula (13)
 –
 –
 –
 –
 – Gustatory cortex
 –
 –
 –

• Limbic System
 – Cingulate gyrus, parahippocampal gyrus and hypothalamus and part of the thalamus
 –
 –
 –
 – Allows:

THE CEREBRUM
• Aphasias
 –
 –
 –
 –
 –
 – Flat EEG =
DIENCEPHALON

- Consists of the Thalamus, Hypothalamus and Epithalamus
 - Thalamus
 - Hypothalamus
 - Initiates:
 - Regulates:
 - Controls:
 - Structures in the region
 - Infundibulum
 - Mammillary bodies
 - Hypothalamus
 - Supraoptic Nucleus
 - Contains:
 - Paraventricular nucleus
 - Contains:
 - Stimulates uterine contractions in labor and milk ejection for nursing
 - Other structures in the region
 - Optic chiasma
 - Pituitary gland (hypophysis)
Diaphragma sellae

- Epithalamus
 - Pineal gland
 -
 -
 -

THE MIDBRAIN

- Cerebral Aqueduct
 - Runs through:

- Cerebral peduncles
 - Contain:

- Superior cerebellar peduncles
 - Contain:

- Cranial Nerves:

- Corpora Quadrigemina
 - Four nuclei on the dorsal midbrain
 - Superior colliculi
 -
 -
 - Inferior colliculi

THE PONS

-

- Cranial nerves:

- Middle cerebellar peduncles contain tracts which connect pons to cerebellum
MEDULLA OBLONGATA

- Pyramids
 - Carry:
 - These fibers decussate in the lower medulla =
 - Plays a role as:
 - Contains several visceral motor nuclei
 - Cardiovascular center
 - Respiratory center
 - Other centers
 - Ascending sensory Tract Nuclei
 - Nucleus cuneatus
 - Nucleus gracilis
 - C.N. :
 - Reticular formation
 - Project to:
 - Govern :
 - Filters :
 - Separated by:
• Vermis

• Folia and fissures

• Arbor vitae

THE CEREBELLUM

• Function
 – Processes info. from:
 – Sends output:
 – Makes movements:
 – Uses input from sensory, proprioceptors regarding:

• 3 Cerebellar Peduncles
 – Connect:
 – Superior Cerebellar Peduncle (1)
 •
 – Middle Cerebellar Peduncle (2)
 •
 – Inferior Cerebellar Peduncle (3)
 •

DISEASES AND DISORDERS

• Transient Ischemic Attacks (TIA’s)
 –
 –
 –

• Alzheimer’s Disease
 –
 –
• Parkinson’s Disease
 – Degeneration of:
 –
 – Causes:
 – Ldopa w/ drugs that inhibit dopamine breakdown may delay

• Ataxia
 –
 –

• Cerebrovascular Accidents (Strokes)
 –
 –
 –

• Huntington’s Disease
 –
 –
 –
 –
 – Death w/in 15 yrs.; protein build-up in brain cells causing them to die

PERIPHERAL N.S.: COMPONENTS

• Sensory Division
 – Sensory fibers: (somatic afferents)
 – Sensory fibers: (visceral afferents)

• Motor Division

• Efferent motor fibers: (muscles glands and viscera)
 –
 –
PNS: THE MOTOR DIVISION

• Consists of Two Subdivisions
 – Somatic Nervous System
 • Conduct impulses to:
 • Allows conscious control of:
 – Autonomic Nervous System
 • Regulates:
 • Regulates:
 • Divided into two subdivisions:
 –
 –

Autonomic Nervous System

– Sympathetic System
 •
– Parasympathetic System
 •

Sensory Receptors of the PNS

• Classified by location or type of stimuli detected

• Location
 – Exteroceptors
 – Interoceptors
 – Proprioceptors

• Stimuli Detected
 – Mechanoreceptors
 – Chemoreceptors
Anatomy 2B

- Photoreceptors
- Thermoreceptors
- Nociceptors

Location: Exteroceptors

- Detect:
- Pick up:

Location: Interoceptors (Visceroreceptors)

- Detect:
- Detect:

Location: Proprioceptors

- Respond to:
- In:
- Monitor:

Stimuli Detected: Mechanoreceptors

-
-

Stimuli Detected: Chemoreceptors & Photoreceptors

- Chemoreceptors
 - Detect:
 - Examples:
 -
 -

- Photoreceptors
 - Detect:
 - Examples:
 -

Stimuli Detected: Thermoreceptors & Nociceptors

- Thermoreceptors
 - Detect changes in temperature
 - Examples:

- Nociceptors
 - Stimulated by potentially damaging stimuli
 - Examples:
 - Free nerve endings
 - All receptor types function as nociceptors when overstimulated

Receptors

- Examples:
 - Free nerve endings
 - Detect:
 - Merkel’s Discs
 - Detect:
 - Examples:
 - Meissner’s Corpuscles
 - Detect:
 - Examples:
 - Pacinian Corpuscles
 - Detect:
Ruffini’s Corpuscles
 - Detect:

Examples:
 - Muscle spindles
 - Detect:
 - Golgi Tendon Organ
 - Detect:
 - Response:

Pain
 - Pain Receptors
 - Pain receptors (free nerve endings):

Classification
 - Somatic Pain
 - Visceral Pain
 - Results from:
 - Because visceral pain and somatic pain follow the same neural pathway:

Homeostatic Imbalance
 - Phantom limb pain –
 - Now use epidural anesthesia to block pain to spinal cord
Nerve Structure

- Epineurium—
- Perineurium—
- Endoneurium—

Cranial Nerves

(from rostral to caudal)

- C.N. (I) and (II):

- C.N. (III) through (XII):

 - Almost all of the cranial nerves:

 - C.N. (X), Vagus, :

 - Cranial nerves:

 - C.N (III), (VIII), (IX) and (X) contain:

C.N. I: Olfactory Nerves

- Originate in:

- Pass through:

C.N. II: Optic Nerves

- Originate from:

C.N. III: Oculomotor Nerves

- Motor to:

- Parasympathetic fibers to:

- Proprioceptive afferents from:
C.N. IV: Trochlear Nerves

•
 • Motor to:
 • Proprioceptive afferents from:

C.N. V: Trigeminal Nerves

•
 • Three branches
 – Ophthalmic Branch (V₁)
 – Sensory from:

C.N. V: Trigeminal Nerves

• Maxillary Branch (V₂)
 – Sensory from:

C.N. V: Trigeminal Nerves

• Mandibular Branch (V₃)
 – Motor to:
 – Sensory from:

C.N. VI: Abducens Nerves

•
 • Motor to:
 • Proprioceptive afferents from:

C.N. VII: Facial Nerves

•
 • Motor to:
 • Taste from:
 • Parasympathetic innervation of:
C.N. VIII: Vestibulocochlear Nerves

- Two branches
 - Cochlear Branch
 -
 - Vestibular Branch
 -

C.N. IX: Glossopharyngeal Nerves

- Motor to:
- Taste from:
- General sensory from:
- Sensory from:
- Parasympathetic innervation to:

C.N. X: Vagus Nerves

- Motor to:
- Sensory from:
- Parasympathetic innervation of:

C.N. XI: Spinal Accessory Nerves

- Motor to:
- Proprioceptive afferents from:
C.N. XII: Hypoglossal Nerves

- Motor to:
 - Proprioceptive afferents back from:

Spinal Nerves

- Transmit: (afferents)
 - Transmit motor info. from: (afferents)
 - Numbered according to:
 - C₁ exits the spinal cord:
 - C₂ through C₇ exit through: (C₈ is above T₁)
 - All of the rest:
 - There is only one small pair of coccygeal nerves (C₀)

Spinal Nerves: Composition

- Each spinal nerve:
 - The Ventral root contains:
 - The Dorsal root contains:
 - Dorsal root ganglion contains:

Spinal Nerve Divisions

- Meningeal branch –
- Rami communicantes (autonomic pathways):
Spinal Nerves: Plexuses

- Plexus
 - Allows:

The Cervical Plexus

- Formed by:
- Most branches form:
 - Innervate:
- Phrenic nerve
 - (receives fibers from C₃–C₅)

The Brachial Plexus

- Formed by:
- Major branches of this plexus:
 - Roots—
 - Trunks—
 - Divisions—
 - Cords—

Brachial Plexus Nerves

- Musculocutaneous
 - (BBC)
- Axillary
 - (Deltoid, teres minor)
- Radial
 - (BEST)
- Median
 - (lateral flexors of wrist & fingers 31/2)
• **Ulnar**

 (medial flexors)

• **Pectoral N.**

 – Lateral:

 – Medial:

• **Thoracodorsal-**

 – From:

 – Innervates:

• Long thoracic

 – From:

 – Innerv.:

• **Subscapular**

 – From:

 – Innerv.:

• Suprascapular

 – From:

 – Innerv.:

The Sacral Plexus

• Arises from:

• Has about one dozen branches serving the gluteal region, pelvic structures, perineum and lower limbs

Lumbosacral Nerves

• **Femoral nerve (from Lumbar plexus)**

 – Innerv.:

• **Obturator nerve (from Lumbar plexus)**

 – Innerv.:

• Sciatic nerve

 –

 – Innerv.:
Composed of:
- Pudendal

Nerve Damage
- Sciatica

- Usually the result of:

Brachial Plexus Injuries
- Brachial Plexus Injuries
 - Cause:
 - Median nerve damage
 - Loss of:
 - Ulnar nerve damage
 - Results in:
 - Radial nerve damage
 - Results in:

Reflex Actions

Reflex Arcs

- Neural pathways with 5 components:
 - 1. Receptor
 - 2. Sensory neuron
 - 3. Integration center
 - 4. Motor neuron
Types of Reflexes

• Monosynaptic Reflexes
 – Chain of only 2 neurons involved
 • Example: Patellar reflex (stretch reflex)
 – Quadriceps tendon stretched, muscle spindles send impulse (muscle stretching), spinal cord, motor neuron, quadriceps muscle contracts

• Polysynaptic Reflexes
 – Requires:
 – Example: Withdrawal reflex (crossed extensor reflex)

THE ENDOCRINE SYSTEM

Endocrine System

• Function
 – Regulates:
 – Maintains:
 – Integrates:

Hormones

–

– Some produced by:
 – Some produced by:

• Types of Hormones
 – Amino acid derivatives
 • Simple amines, thyroxin, peptides, and proteins
 – Examples:
• Thyroid hormones, epinephrine and NE, insulin, glucagon

• Steroid hormones
 • Includes:
 • Examples:
 •

• Eicosanoids
 •
 • Are paracrine hormones:
 • Examples:
 •

Hormone Actions

•
 •
 •
 •

Receptors

•
 • Determine:
 • Binding may cause:
 •
 •
 •
 •
 •
Hormone Mechanisms

- Two mechanisms enable hormone/receptor binding to influence cell activity:
 -
 -

- Second messengers
 -
 -
 - Used By:
 - Example:
 -

- Cyclic AMP (cAMP)
 - Formed from:
 - Hormone/receptor binding
 -
 -
 -
 -
 - Effect depends on:

- PIP Mechanism (also for a.a. based hormones)
 -
 - Both act as:
 - IP3 triggers:
 - Ca$^{2+}$ activates:
 - DAG activates:

Direct Activation of Genes

- Steroid hormones and thyroid hormone:
- Bind to:
- Hormone/receptor binding stimulates:
Hormone Regulation

- **Nervous System**
 - Ultimate control of hormone mechanisms belongs to the nervous system

- **Stimulation or inhibition of endocrine glands comes from THREE sources:**
 - Humoral stimuli
 - Other hormones (Hormonal stimuli)
 - Neural stimuli

- **Regulation by Humoral Stimuli**
 - Example:

- **Regulation by Other Hormones**
 - Hormones may stimulate or inhibit the release of other hormones
 - Hypothalamus
 - Pituitary hormones-

- **Regulation by Neural Stimuli**
 - Example:
Feedback Mechanisms

- Negative Feedback System
 -
- Positive feedback system
 -

Hypo or Hypersecretion

- May result in a disorder

Examples:
- Diabetes
- Graves disease
- Addison’s Disease
- Cushing’s disease

Major Endocrine Glands

- Pituitary gland (hypophysis)

- Two major lobes:
 - Anterior lobe (adenohypophysis)
 -
 - Posterior lobe (neurohypophysis)
 -

Posterior Pituitary Gland

- Posterior Lobe
 - Posterior lobe + infundibulum =
 - Neuron axons to pituitary =

- Two hormones released here
- Both produced in nuclei of hypothalamus
- Both secreted into capillaries posterior pituitary for distribution to body
• Supraoptic Nucleus
 – ADH (Vasopressin/Antidiuretic hormone)
 •
 •
 •

• Paraventricular Nucleus
 – Oxytocin
 •
 •

Anterior Pituitary Gland
• Anterior Lobe=
 –
 –
 – Release of hormones is controlled by:

• Hypophyseal Portal System

Nontropic Hormones
• Hormones Secreted
 – Growth Hormone (GH) or Somatotropin
 • Produced in response to:
 • Also secreted in response to:
 • Inhibited by:
 • Stimulates:
 • Hyposcretion results in:
 • Hypersecretion results in:
- Prolactin (PRL)
 - Release stimulated by:
 - Inhibited by:
 - Both are influenced by:
 - Stimulates:

Anterior Pituitary Gland

- The following four anterior pituitary hormones are tropic hormones
 - TSH-
 - FSH, LH-
 - ACTH-

Tropic Hormones

- Hormones Secreted
 - Thyroid Stimulating Hormone (TSH)
 - Stimulates:
 - Release stimulated by:
 - Inhibited by:
 - Adrenocorticotropic Hormone (Corticotropin)
 - Stimulates:
 - Release stimulated by:
 - Inhibited by:
 - Follicle Stimulating Hormone (FSH)
 - Promotes:
 - Luteinizing Hormone (LH)
The Thyroid Gland

- Cuboidal follicle cells produce thyroglobulin
 -
 -

Thyroid Hormone

- Secreted in response to:
- Inhibited by:
- Effects
 - Increases:
 - Increases:
 - Promotes:
 - Promotes:
 - Promotes:
 - Speeds up:
- Hyposecretion
 -
 -
- Hypersecretion
 -

Calcitonin

- Secreted by:
- Released in response to:
The Parathyroid Glands

- Stimulates:

 - Secrete parathyroid hormone (PTH)
 - Secreted in:
 - Stimulates:

 - Increases:

Parathyroid Hormone

- Hypersecretion
 - Depletes:
 - Depresses:

 - Hyposcretion

 -

Adrenal (Suprarenal) Glands

- Two glands-

 - Cortex produces:

 -

Adrenal Cortex

- Three Regions:
 - Zona Glomerulosa

 - Production of:
• Regulation of:

Aldosterone

•

• Increases:

• Stimulated:

• Renin secreted by:

• Stimulates:

• Inhibited by:

• Secreted by:

 Zona Fasciculata

 •

 • Secretes:

 • Cortisol

 • Released in response to:

 • Inhibited by:

 • Promotes:

 • Causes a rise in:

Cortisol

 Hypersecretion

 •

 •

 •

 •

 •

 Hyposcretion

 •
Adrenal Cortex

- Zona Reticularis
 - Produces:

Adrenal Medulla

- Chromaffin Cells
 - Secretes:
 - Release stimulated by:

The Pancreas

- Acinar cells
 - Secrete:
 - Islets of Langerhans
 - Contain alpha cells
 - Contain beta cells

Insulin

- Stimulated by:
- Inhibited by:
- Enhances:
- Stimulates:
- Promotes:
• Stimulates:

Glucagon

- Released in response to:

- Promotes:
 - Promotes:
 - Gluconeogenesis:
 - Glycogenolysis:

Diabetes
• Diabetes Insipidus (non insulin related)
 - Caused by:

Diabetes Mellitus
 - Results from:

Diabetes
• Diabetes Mellitus
 - Two types:
 - Type 1 (Juvenile Onset)

 - Type 2 (Adult Onset)
Influenced by:

Diabetes

- Lack of:
 -
 -
 -
 -
 -
 -
 -
 -

- Symptoms
 - Polyuria
 -
 - Polydipsia
 -
 - Polyphagia
 -

The Pineal Gland

- Secretes:
 -
 -

The Thymus Gland

- Shrinks:
 - Produces:
 - Aids in:

The Gonads

- Produce gametes and reproductive hormones
 -
Estrogens and progesterone in females

- Estrogens cause:
- With progesterone, promote:

THE CIRCULATORY SYSTEM

- Blood: Function
- Transport
- Protection
- Regulation
Physical Characteristics

- Color
- pH
- Average Volume
- Viscosity

Blood: Components

- Blood
 - Plasma
 - Erythrocytes
 - Leukocytes
 - Platelets
- Hematocrit

Composition of Plasma

- 92% water
- Proteins (8%
- Clotting proteins:
• Nutrients
 -

• Wastes
 - Urea -
 - uric acid
 - Creatinine-

• Electrolytes
 -

• Gases
 -

• Hormones

• SERUM =

Plasma Proteins

• Albumins
 -

• Globulins
 - Alpha and beta (produced by liver)
 -
 - Gamma
 -
 - Fibrinogen (produced by liver)
 -
Formed Elements: Erythrocytes

- **Function**

- **Structure**

 - 250-280 million hemoglobin molecules/RBC X 4 O2 binding sites =

Hemoglobin

- **Composed of**

- **Binds:**
- May also bind to:

- **Forms:**
 - Releases O2 in tissues
 - CO2 may bind to globin
Erythrocyte Production: Erythropoiesis

- Stimulated by:
- Formed elements:
 - Hemocytoblast = stem cell
 - Reticulocytes enter circulation
 - Reticulocyte counts:
 - Over 2 million RBC’s produced/sec.
- Iron and B vitamins necessary;
- Kidney cell hypoxia =
- Accelerated RBC production triggered by:
 - Testosterone:

Erythrocytes Destruction

- RBC Life span:
- Old RBCs:
 - Hemoglobin
 - Globin
The iron of the heme group

Remainder becomes:

Bilirubin:

Erythrocyte Disorders

- Anemias
 - Accompanied by:
 - Causes:
 - 1. Reduced number of RC’s
 - Blood loss, RC destruction, bone marrow failure
 - Three types:
 - Hemorrhagic anemia-
 - Hemolytic anemia-
 - Aplastic anemia-(abnormalities in marrow)-
 - Anemias
 - Causes of anemia (continued):
 - 2. decreased hemoglobin
 - Athletes anemia-
 - Pernicious anemia (B₁₂ deficiency)
 - Intrinsic factor-
 - Anemias
 - Causes of anemia (continued):
 - 3. Abnormal hemoglobin
 - Thalassemias
 - Genetic-
• **Sickle cell anemia**

 – Genetic-

 – RBC’s collapse/sickle-shaped -

• **Polycythemia**

 – Dizziness, high RBC count (hematocrit may be 80%), viscous blood, impaired circulation

 •

 •

 • Treated by-

Leukocytes

•

•

• Protect body from:

• Use:

•

Granulocytes

• **Neutrophils (50-70% of WBC’s)**

 –

 –

 –

 –

• **Eosinophils (2-4% of WBC’s)**

 –

 – granules filled with:

 –

 –
Lecture Notes

- Basophils (0.5-1% of WBC’s)

 -

- Agranulocytes

 • Lymphocytes (25% of WBC’s)
 -
 - Increase during viral infection

 •

 • Monocytes (3-8% of WBC’s)
 -
 - Phagocytosis of:

Leukocyte disorders

• Leukocytosis

 -

• Leukopenia

 -

 -

• Leukemias – all fatal if untreated
 - Cancer:
 - Rapidly dividing WBC’s, unspecialized, nonfunctional

 -

• Mononucleosis

 -

 -
Symptoms include:

Differential White Blood Cell Count:

Platelets

- Fragments of:
 -
 -
- Life span:
- Normal =

Hemostasis

- =

Stages of Hemostasis

1. Vascular spasm – reduces blood loss
 -
 -

2. Platelet plug formation
 -
 -
 - Platelets release chemicals (serotonin, ADP, thromboxane) to:

3. Coagulation (blood clotting)
 - Begins:
 -
 -

Steps of coagulation

- Damaged tissue activation of many procoagulants factor X activated forms a complex with PF3 factor V and calcium ions becomes prothrombin activator
- Prothrombin converted to enzyme thrombin fibrinogen forms fibrin mesh platelets stick to mesh and plasma becomes gel-like
Clotting and Bleeding Disorders

- Hemophilia
 - ↑
 - →

- Thrombocytopenia
 - ↓

- Thrombus
 - Clot develops in unbroken vessel

- Embolus
 - Traveling thrombus

ABO Blood Groups

- Protein antigens on RBC plasma membrane:
 -
 - (agglutinogens)

- Antibodies:

- Results in:
Lecture Notes

• Universal Donor

• Universal Recipient

Rh Blood Groups

• Anti-Rh antibodies not spontaneously formed in Rh− individuals

• Second exposure to Rh+ blood:

Erythroblastosis fetalis

• Rh+ fetus/Rh- mother

• Second pregnancy

THE CIRCULATORY SYSTEM: BLOOD VESSELS

Blood Vessels: Arteries

• Arteries

• Three groups:
 • Elastic Arteries
Aorta, pulmonary trunk, common iliac arteries

- Muscular Arteries

- Active in:

- Examples:

 Femoral, brachial, axillary arteries

- Arterioles

Blood Vessels: Veins

Other Vessels

- Capillaries

- Sinusoids
Anatomy 2B

• Anastomoses

Structure of Blood Vessels

• Capillaries

• Arteries and Veins
 – Three tunics
 •
 •
 •
 – Vasa vasorum
 •

Blood Pressure

• mm Hg pressure in:
 • Measured with a sphygmomanometer

 – Systolic pressure:
 – Diastolic pressure:
 – Pulse pressure = systolic –

Influences on B.P.

• Blood Pressure varies directly with the following:
 – Cardiac Output
 •
 •
 – Peripheral Resistance
 • Opposition to blood flow
• Blood Pressure varies directly with the following:
 – Blood Volume
 • Mainly regulated by kidneys
 • ↑
 • ↓

Short Term Regulation of B.P.

• By:
• Nervous System Regulation:
 – Sympathetic nerve fibers
 • Vasomotor center in medulla
 –

 »
 – Controls:
 – Controls:
 – Baroreceptors
 •
 •
 • Stretching ➔
 • Vasomotor center inhibited ➔
 – Chemoreceptors
 • Monitor:
 •
 •
 • Vasoconstriction ➔
Chemical Regulation of B.P.

- **Epinephrine and Norepinephrine**
 -
 - ↑

- **ANF (Atrial Natriuretic Peptide or hormone)**
 -
 - ↓

- **ADH (Antidiuretic Hormone)**
 - Stimulates:
 -
 - ↑

- **Renin**
 - Released from:
 - Stimulates:
 - Kidneys reabsorb:

- **Renin/Angiotensin/Aldosterone System**

Renal Regulation of B.P.

- **Kidneys may alter B.P. directly**
 -
 - ↓

- **Kidneys may alter B.P. indirectly**
 - Renin angiotensin system activated with:
 - Vasoconstriction, water reabsorption due to:
 - ↑
Disorders

• Hypotension
 —
 — Aging, poor nutrition, anemia, hypothyroidism, Addison’s disease, low blood protein levels or circulatory shock w/ acute hypotension

• Hypertension
 —
 —
 — Higher risk with
 •
 •
 •
 •
 •
 •
 • Circulatory shock
 — Not enough blood to fill the vessels and circulate normally
 • Hypovolemic shock
 —
 » Diarrhea, vomiting, hemorrhage, burns
 —

Heart Location & Anatomy

• Location:
 —

• Base
 —
Apex

- Deep two-layered serous pericardium
 - Parietal layer lines:
 - Visceral layer (epicardium) on:
 - Two layers separated by:

- Superficial fibrous pericardium

The Heart Wall

- Three Layers
 - Endocardium-
 - Myocardium-
 - Epicardium-

Heart Chambers: Atria

- Two superior atria separated by:
 - Each atrium:

Heart Chambers: Ventricles

- Two inferior chambers separated by:

Pulmonary and Systemic Circulation

- Right side receives oxygen-poor blood from tissues

- Left side receives oxygenated blood from lungs
Coronary Circulation

- Arteries arise from:
 - Left coronary artery branches → Supplies:
 - Right coronary artery branches → Supplies:
- Cardiac veins:
- Coronary sinus empties into:
- Great cardiac vein of:
- Middle cardiac vein in:
- Small cardiac vein from:
- Several anterior cardiac veins empty directly into:

Cardiac Histology

- Cardiac muscle cells

Cardiac Conduction System

- Nodal System
• **Sinoatrial (SA) Node**

 • Near:
 • **Depolarizes:**

• **Atrioventricular (AV) Node**

 • Above:
 • **Depolarizes:**
 • Passes impulse on to:

• **Bundle of His (AV Bundle)**

 • Conducts impulse to:

• **Bundle Branches**

 • Branch into:
 • **Depolarizes:**

• **Purkinje Fibers**

 • Cardiac Conduction System Summary
Extrinsic Innervation of the Heart

- Autonomic Nervous System
 - Stimulation by sympathetic neurons (cardioacceleratory center in medulla)
 - Inhibition by parasympathetic neurons (cardioinhibitory center in medulla)
 - Via:

Cardiac Cycle

- Interval from:

- Consists of Two Phases:
 - Systole phase-
 - Diastole phase-

- Systole Phase
 - Atrial Systole (0.1sec.)
 - Ventricular Systole (0.3sec.)
• Diastole Phase
 – Ventricular Diastole
 – ECG Readings
 – Heart block
 – Arrhythmias - irregular heart rhythms
 – Fibrillation

Heart Sounds
• Two sounds (lub-dub)
 –
 –
• Pause
 –
 –
• 0.8 sec. total=
Cardiac Output (CO)

- Sympathetic stimulation needed if:
 - Starlings Law

Heart Rate Regulation: Nervous System

- Cardiac Inhibitory Center

- Cardiac Acceleratory Center

Other Regulators

- Hormonal Regulation
 - Accelerators
 -
 - Body Temperature
 - Increase temp. =
 - Decrease temp. =
 - Baroreceptors
 - Carotid Sinus and Aortic Arch
 - Stretch→
Bainbridge (Atrial) Baroreceptors

• Measure intraatrial pressure

Disorders

• Tachycardia
• Bradycardia
• Myocardial Infarction
• Arrhythmia
• Fibrillation
• Angina Pectoris
• Pericarditis
• Congestive heart failure
• Atherosclerosis
• Ischemic Heart Disease

• Heart Murmur