If you choose to take this class, it is your responsibility to make sure you are properly enrolled.
If you choose not to take this class, it is your responsibility to make sure you are properly ‘dropped’.

Course Objective
This course is the first of a two-semester sequence. In this semester we will cover the topics of kinematics, Newton’s Laws of Motion, energy and momentum, rotational motion, gravitation, oscillations, waves, and fluid mechanics.

Co-requisite
Math 1A is a co-requisite for this class. The laboratory section is also a required component of the course.

Our Textbook
Please refer to the document titled Textbook Information for details.

Course Coverage
We will explore approximately one chapter of the text per week, covering Chapters 1 through 15, excluding Chapter 9.

Attendance
While there are no “points” specifically associated with attendance, you will find that attendance is necessary for your success in this class. I reserve the right to drop you from the class for excessive absences.

Academic Dishonesty
While I encourage you to work together while studying, all graded work must represent your individual effort. Any instance of academic dishonesty will result in a score of zero points for the work at issue. Please refer to the RCC Student Handbook for details.

Homework
Homework will consist of two parts: Online Assignments and Written Assignments. Please refer to the document titled Homework Information for details.

Laboratory
Please refer to the document titled Laboratory Info for a general overview of what to expect in lab this semester. The schedule of planned activities in lab is shown on the Course Calendar.

Exams
We will have four exams during the course of this term. Each exam will be given during an 85 minute lecture period and will include material from three chapters. Please refer to the Course Calendar for the dates and content for each exam.

Final Exam
The Final Exam will be comprehensive and similar in content to the regular exams. Please refer to the Course Calendar for the date and time of the Final Exam for your lecture section.

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Assignments</td>
<td>10%</td>
<td>Points from each section will be normalized so that the total possible points, in proportion to the above percentages, will equal 100. The grading scale for the course will be:</td>
</tr>
<tr>
<td>Written Assignments</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Points: A: 100 to 90 B: 90 to 80 C: 80 to 70 D: 70 to 60
“Make-Up” Exams
A missed exam will be recorded as a score of zero, and will be included with your total exam score. Requests for a "make-up" exam will be considered on a case-by-case basis. I reserve the right to deny or approve any request for a "make-up" exam.

If you have ANY questions, problems, suggestions, please tell me as soon as possible.

Learning Objectives!

Upon completion of this class you should be able to:

- Define concepts related to the study of mechanics: force, energy, momentum.
- Analyze the forces acting on an object and determine the motion of the object.
- Solve problems in kinematics involving motion of one or more objects.
- Define the principle of conservation of mechanical energy and use it to solve problems involving motion of one object.
- Determine the frequency and energy of an oscillating object from its physical properties.
- Explain the relationship between the speed, frequency, wavelength, amplitude and energy of a wave.
- Describe the relationship between the height, pressure and speed of a moving fluid according to Bernoulli’s Principle.
- Perform physical experiments that relate to the subject matter of the course and analyze and interpret data collected in such experiments.

Special needs: If you have a physical, psychiatric/emotional, medical, or learning disability that may impact your ability to carry out the assigned course work, I encourage you to contact the staff in the Disability Resource Center at 951-222-8060 or 951-222-8061 (TDD), located in the Administration building. All information and documentation is confidential.

The webpage for the DRC is here (on the RCC website):

http://rcc.edu/services/disablestudents/Pages/_dsps_home.aspx