Instructions: All work is to be shown, legible and answers/solutions are to be boxed in the space provided. You are to work alone and any student caught cheating will receive a zero. You will be allotted 2 hours and may only use a pencil and scientific calculator for this exam. Answers to word problems are to be written in a complete sentence with the correct units. Failure to comply with these instructions may result in a zero. Good luck and have some fun!
1. Let \(f(x) = \begin{cases}
 x & \text{if } x < 1 \\
 3 & \text{if } x = 1 \\
 2 - x^2 & \text{if } 1 < x \leq 2 \\
 x - 3 & \text{if } x > 2
\end{cases} \)

a) (3pts) Graph a detail graph of \(f \).

b) (1pt each) Evaluate the following limits, if it exist.

i) \(\lim_{x \to 1^-} f(x) \)
ii) \(\lim_{x \to 1^+} f(x) \)
iii) \(\lim_{x \to 1} f(x) \)
iv) \(\lim_{x \to 2^-} f(x) \)
v) \(\lim_{x \to 2^+} f(x) \)
vi) \(\lim_{x \to 2} f(x) \)

2. (2pts each) Evaluate the following limits, if it exists.

a) \(\lim_{x \to 0} \left(\frac{1 + x + \cos x}{3 \cos x} \right) \)

b) \(\lim_{x \to 3} \left(\frac{x^3 - 27}{x^2 - 9} \right) \)

c) \(\lim_{x \to 2} \left(\frac{4 - x^2}{3 - \sqrt{x^2 + 5}} \right) \)

d) \(\lim_{x \to 0} \left(\frac{1}{x \sqrt{1 + x}} - \frac{1}{x} \right) \)

e) \(\lim_{x \to 0} \left[\frac{(2 + x)^{-1} - 2^{-1}}{x} \right] \)

f) \(\lim_{x \to \infty} \left(\frac{1 - e^x}{1 + 2e^x} \right) \)
3. Use the Squeeze Theorem to evaluate $\lim_{x \to \infty} \frac{\sin x}{x}$.

4. Sketch a graph of a function f for which $f(0) = f(2) = f(4) = 0$, $f'(1) = f'(3) = 0$, $f'(0) = f'(4) = 1$, $f'(2) = -1$, $\lim_{x \to \infty} f(x) = \infty$, and $\lim_{x \to -\infty} f(x) = -\infty$.
5. Given the graph of f below:

![Graph of f](image)

a) Sketch a graph of f'

b) Sketch a graph of f''
6. Let \(f(x) = x^2 \). Find a number \(\delta \) such that if \(|x - 2| < \delta \), then \(|x^2 - 4| < \frac{1}{4} \).

7. Use the precise definition of a limit (\(\varepsilon \delta \)-definition) to prove \(\lim_{x \to 2} x^2 = 4 \).
8. Show that \(f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2 \\ 4 & \text{if } x = 2 \end{cases} \) is continuous on \((-\infty, \infty)\).

9. Use the Intermediate Value Theorem to show that there is a root of the equation in the given interval
\[
\sin x = x^2 - x \text{ where } x \in (1, 2).
\]
10. Let \(f(x) = \frac{1}{4} x^2 - \pi \).

a) Use the definition of a derivative to find \(f'(x) \).

b) Find the equation of the tangent line (in slope-intercept form) at \(x = 2 \).